

LATAM Airlines Group With the support of South Pole

Version	Publication date	Document type		
1.0	August / 2024	Procedure		

1. Context

LATAM Airlines Group S.A. (LATAM) is a multinational airline based in Santiago, Chile. Together with its subsidiaries, in 2022 it connected 144 destinations in 22 countries and 154 destinations including its cargo operations.

The operations of LATAM subsidiaries in Brazil, Colombia, Ecuador, and Peru reached or exceeded figures recorded in 2019 before the pandemic in terms of capacity, while LATAM Chile's recovery has been a little slower. In the calendar year 2022, around 25.3 million passengers were transported within Chile, representing an increase of 44.4% over 2021. Demand increased by 41.8% in Spanish-speaking countries, while the average occupancy was 81% with an increase of 6.2% over 2021. On the other hand, in Brazil, a total of 28.6 million passengers were transported. In the international market, which considers regional flights and long-haul flights to three continents, LATAM served 46 destinations in 22 countries, and in 2022 re-opened 14 routes that were suspended due to the COVID-19 pandemic. Average service supply increased by 142.3% compared to 2021 and average demand increased by 204.7% to 8.6 million passengers carried by the LATAM group, with a load factor of 83%.

In response to increasing investor interest in corporate management and disclosure of climate-related risks and opportunities, in 2023 LATAM identified and assessed its climate-related risks and opportunities using scenario analysis. Using the outputs of this work, in this report LATAM seeks to align its climate risk disclosure with the recommendations from the Task Force on Climate-Related Financial Disclosures (TCFD), including as they relate to incorporating key risks and opportunities within enterprise risk management (ERM) processes. This report (for internal use) is used as the basis for LATAM's summary TCFD disclosures within the annual report.

Whilst the narrative (including risk updates) in this report reflects reporting year 2023, the data in the report is specific to reporting year 2022. The data will subsequently be updated with 2023 data when available.

2. Scope

Given the scope of LATAM's operations, which include over 154 destinations, for this report, LATAM chose to focus on 56 of its main locations/airports, which are detailed in Table 1 below. These airports were identified following the methodology described in detail in the Risk management section.

Version 1.0

Table 1. Scope of airports analysed in this report

Airports						
Hercilio Luz International Airport	Ministro Pistarini International Airport	Alejandro Velasco Astete International Airport				
Aeroporto de São Paulo/Congonhas	Lynden Pindling International Airport	Inca Manco Capac International Airport				
Aeroporto Internacional do Rio de Janeiro - Galeão	Orlando International Airport	Coronel FAP Carlos Ciriani Santa Rosa International Airport				
São Paulo-Guarulhos International Airport	Mario Pereira Lopes Airport	llo Airport				
Silvio Pettirossi International Airport	Mexico City International Airport	Francisco Carle Airport				
Santos Dumont Airport	Adolfo Suárez Madrid-Barajas Airport	Jaen Airport				
Seymour Airport	Punta Cana International Airport	Cap. FAP Pedro Canga Rodriguez Airport				
José Joaquín de Olmedo International Airport	Jose Maria Cordova International Airport	FAP Captain Guillermo Concha Iberico International Airport				
Mariscal Sucre International Airport	Viru Viru International Airport	FAP Captain Jose Abelardo Quiñones Gonzales International Airport				
Mariscal Lamar International Airport	Cerro Moreno International Airport	FAP Captain Carlos Martínez de Pinillos International Airport				
Francisco de Orellana Airport	El Loa Airport	Cad. FAP Guillermo del Castillo Paredes Airport				
Eloy Alfaro International Airport	Diego Aracena International Airport	Coronel FAP Francisco Secada Vignetta International Airport				
San Cristobal Airport	Carriel Sur International Airport	Mayor General FAP Armando Revoredo Iglesias Airport				
Ciudad de Catamayo Airport	El Tepual Airport	Miami International Airport				
El Dorado International Airport	Presidente Carlos Ibanez del Campo International Airport	Comodoro Arturo Merino Benitez International Airport				
Jorge Chavez International Airport	Joinville-Lauro Carneiro de Loyola Airport	Mataveri International Airport (Isla de Pascua Airport)				
John F. Kennedy International Airport	Brasilia International Airport (Presidente J. Kubitschek Int'l Airport)	Carrasco Gral. Cesareo L. Berisso International Airport				
Salgado Filho International Airport	Gustavo Rojas Pinilla International Airport	Capitan FAP VIctor Montes Arias International Airport				
Navegantes-Ministro Victor Konder International Airport	Rodriguez Ballon International Airport					

3. Alignment with the TCFD recommendations

3.1. Governance

• Board's oversight of climate-related risks and opportunities.

LATAM is presided over by two governance bodies, the Board of Directors and the Directors' Committee. Regarding climate-related issues, the Board of Directors has appointed a Sustainability & Strategy Committee to analyze results and make strategic decisions related to sustainability issues. This committee is the highest authority addressing climate-related issues and progressing goals and commitments. It reports to the Board of Directors on a quarterly basis.

The Strategy and Sustainability Committee is responsible for developing, implementing, and reporting progress against the sustainability strategy, which is centered on the following three strategic pillars:

- Shared Value ('Valor compartido')
- Climate Change ('Cambio Climático')
- Circular Economy ('Economía Circular')

Each of the pillars includes specific goals and objectives as well as key performance indicators (KPIs) that involve internal and external stakeholders for their achievement. Similarly, in developing the goals and objectives of each pillar, the United Nations Sustainable Development Goals (SDGs) were taken into account.

• Management's role in assessing and managing climate-related risks and opportunities.

The sustainability strategy guides LATAM's efforts in assessing and managing sustainability and climate-related issues. To track progress against sustainability and climate goals, a set of KPIs has been developed and is monitored by the Sustainability, Security, and Fuel management areas. The executives leading the initiatives related to the three strategic pillars are presented in Table 2. In conjunction with the management areas, the executives report annually to the Board of Directors on the progress of the sustainability strategy and key climate-related issues.

Strategic pillar	Internal team	Position	
Climate Change	Corporate Sustainability Team Leader	Sustainability Chief	
	LATAM Executive Committee	LATAM Financial VP	
Shared Value	Corporate Sustainability Team	Sustainability Chief	
	LATAM Executive Committee	Planification Senior Manager	
Circular Economy	Corporate Sustainability Team	Sustainability Chief	
	LATAM Executive Committee	LATAM Clients VP	
Transversal through all	Corporate Sustainability Team	Sustainability Manager	
pillars	Corporate Sustainability Team	Sustainability Director	

Table 2. Executives leading the initiatives within LATAM's strategic pillars

At the management level, the Corporate Affairs and Sustainability Team is responsible for identifying environmental and social risks, which are consolidated and reported to the Executive Committee and the LATAM Risk Management Unit, who are responsible for their integration into the organization's risk management matrix and subsequent management.

The results of the risk analysis guide the decision-making process on how to manage the identified risks, led by the Sustainability and Strategy Committee of the Board of Directors, and supported by the Audit Committee and key members within the Sustainability & Strategy, Leadership, Finance and Clients business functions.

3.2. Strategy

• Climate-related risks and opportunities the organization has identified over the short, medium, and long term.

LATAM's environmental performance is described in the Commitment to the Future ('Compromiso con el futuro') section of the integrated report, which shows environmental performance indicators and targets relating to the company's carbon footprint and broader resource and waste management. These indicators and metrics are presented in Table 7. Furthermore, in 2022 LATAM began a process to align with the TCFD recommendations in its annual reporting, continuing in 2023 and 2024 with a climate-related risk and opportunity assessment and scenario analysis.

Based on the risk identification assessment process (described in detail in the Risk management section), Table 3 below highlights the climate-related risks and opportunities LATAM identified across the business in the short, medium and long term, as well as their potential impacts.

Version 1.0

Table 3. Summary of the climate scenario assessment for the key physical and transition risks and opportunities identified

Type of risk	Risk	Short-term risk rating reflecting current/actual risk (2025)	<u>Change</u> in risk under future climate scenarios* (2030 and 2050)	Potential impacts for LATAM Airlines Group
Physical acute	Extreme temperatures	Low	2030: Moderate 2050: High	Extreme temperatures can result in: Making takeoff impossible on certain runways that are too short; Accelerating the deterioration of the tarmac over time, causing operational disruption; High temperatures reduce air density and, therefore, aircraft load capacity, reducing revenues; Extreme temperatures lead to higher office operating costs due to increased demand for air conditioning. Airports under a "very high" risk are projected to double by 2050 (vs 2030) from 25% to 55%. Top 3 airports with the largest increases in annual maximum temperatures by 2050 are Adolfo Suárez Madrid-Barajas, Mario Pereira Lopes and Viru Viru, with an increase of over 3°C vs historical period.
Physical acute	Coastal flooding**			Riverine and coastal flooding can result in: Inability to use access roads and transport networks surrounding the airport, leading to service disruption and impeding passenger access; Disruption of air traffic and economic losses in terms of reduced revenues from a decrease in passenger and freight traffic:
Physical acute	Riverine flooding**	Low	2030: Low	Damage to airport infrastructure such as landing lights, radar and navigation facilities and communications networks, increasing costs from infrastructure repairs and construction; Flooding of airport terminals, emergency power facilities and

			2050: Low	transport routes between terminals requiring airports to temporarily close, leading to operational disruption and reduced revenues from ticket fares. For coastal flooding, projections show a higher probability for José Joaquín de Olmedo (GYE) and Santos Dumont (SDU) airports, with flooding exceeding 5 cm but staying below 10 cms. Nine airports have some level of flooding projected, both for the baseline and modeled scenarios. Some airports projected to have floods below 5cms, between 2030 and 2050 are: Navegantes-Ministro Victor Konder (NVT), Gustavo Rojas Pinilla (ADZ), Eloy Alfaro (MEC), Capitán Carlos Martínez de Pinillos (TRU), Seymour (GPS), Carrasco Gral. Cesáreo L.Berisso (MVD) y Presidente Carlos Ibáñez del Campo (PUQ). As for riverine flooding, 40 airports are projected to have some flooding in a 5km radius, with 11 of them to reach above 10cms flooding. By 2050, the highest average of riverine flooding events is projected for Francisco de Orellana (OCC) airport, where floods could surpass 1.6 m, followed by Coronel Francisco Secada Vignetta (IQT) airport, with a high of 1.4 m. Additionally, Gustavo Rojas Pinilla (ADZ) and John F. Kennedy (JFK) airports are projected under high risk, with a flood high of 0.7 m and 0.63 m respectively.
Physical acute	Heavy rainfall	High	2030: Low	An increase in heavy rainfall events could result in: Localised surface water flooding, leading to disruption or delays in airline operations; Flooding near airports, making it difficult for passengers and workers to arrive and causing operational disruptions.

			2050: Moderate	Airports exposed to moderate and higher risk are projected to increase from 2030 to 2050. Also, those at highest risk in 2050 are located in Galapagos Islands (Ecuador) and Junín, El Callao and La Libertad (Peru), with other airports in the region (Chile and mainland Ecuador) also projected to have significant increases in the risk of heavy rainfall.
Physical Thunderstorm s	High	2030: Moderate 2050: Moderate	An increase in the number of thunderstorms could result in: Health and safety risks to air and ground personnel, possibly increasing costs forms insurance and operational disruptions; Operational disruptions due to ICAO recommendations to suspend operations when lightning is detected within a 5km	
				radius. Airports exposed to high and very high risk in 2050 are projected to increase significantly compared to 2030. Those with the highest risk of thunderstorms in 2050 are 2: Galapagos Islands (Ecuador) and Junín (Peru), with other airports in the region (Colombia and mainland Ecuador) also projected to have significant increases in this risk.
Physical acute	Strong winds**	Very Low	2030: Low	An increase in strong winds could result in: Disruptions at key hubs, which could cause disruption in operations; Damage airport infrastructure or even result in temporary
			2050: Low	cessation of ground operations, increasing costs from repairs and new infrastructure; Impacts on aircraft takeoff, causing delays and cancellations total cessation of ground operations, impacting revenues. For all risk levels, the number of exposed airports are project to remain stable in 2050 compared to 2030. Those with ver high risk due to projected future annual maximum speeds ar located in New York (United States), Nassau (Bahamas), and

			Easter Island (Chile), followed by airports located in Montevideo (Uruguay), Magallanes (Chile), San Andres (Colombia) and Punta Cana (Dominican Republic) with a high risk rating. And projections indicate that there will be no considerable increase in the risk of strong winds in 2050 compared to 2030. For the short-term risk, 2025, the average risk level decreases from very high to low.
Physical S acute (Storms (tropical cyclones)	Moderate	Severe storms could result in: Damages to office and airport infrastructure, increasing operating costs from repairs or new infrastructure; Potential impact on aircraft engine performance and maintenance requirements due to storm damage, increasing
			operational costs; Disruption of oil and jet fuel supplies in regions where oil is refined, increasing operational and supply costs in the fuel value chain. In the medium and long term, Gustavo Rojas Pinilla International Airport at San Andres is the only site projected to have increases in wind speed with a 50-year return period, placing it in the low risk category, with an increase of 3% and 4.7% in the medium and long term, respectively. Meanwhile In the short term, the risk for this airport was also determined to be low, according to the Saffir-Simpson scale. For airports in New York (JFK) and Mexico City (MEX) the climate indicator is projected to decrease. While those in Florida (MIA & MCO), Nassau (NAS), and Punta Cana (PUJ) are projected to have very low increases in TCV (Tropical Cyclone Velocity), relative to the short term.

Physical acute	Clear-air turbulence	Uncertain	2030: Uncertain 2050: High	Increased turbulence in the air could result in: Damage to aircraft, with possible diversions and changes in routes, increasing operational costs and possible disruptions; Health and safety risks to passengers and crew, causing operational disruptions and potential reputational impacts, and increasing costs from insurance premiums. In the North Atlantic, models conclude that for every 1°C increase in global temperature, moderate turbulence is projected to increase 14% in autumn and summer, 9% in winter and spring. This could affect flights to and from New York, where the annual maximum temperature by 2050 is projected to increase by nearly 2.5°C. In South America, the largest increases in moderate turbulence are projected to occur in the March-August period.
Physical Wildfire	Wildfires	Low	2030: Low	Increases in wildfires could result in: Reduced visibility at airports and cause changes in air routes, possibly disrupting operations:
			2050: Moderate	Health and safety risks to air and ground personnel, increasing costs from insurance premiums; If fires occur near airports or offices, operations are likely to be disrupted. The main increase in forest fires is expected to be due to a decrease in total precipitation along with increasing temperatures in the region - especially in the Amazon, where the region's optimal conditions for forest fires may change from 42% today to 63% in 2050 under a 4°C increase scenario. In South America, the annual burned area is projected (by 2050 under a 4°C scenario) to change from 0.7 Mkm2 to 2.5 Mkm2 - mostly in the Amazon and the Cerrado region of Brazil. The Chilean and Peruvian coastal zone, where most of LATAM's

				airports are located, does not show major changes by 2050.
Transiti on opportu nity	Transiti on opportu nity Ability to transition technologicall Jow-carbon economy	Low Call	2030: High	Technological advancements supporting lower-carbon aviation could result in: Increased profit by reducing operating costs related to fossil fuel consumption and carbon emissions; Reputational benefits from sustainable practices, helping to maintain an increasingly environmentally conscious consumer
			2050: High	base and securing revenues; Avoiding penalties related to environmental regulatory non-compliance, reducing possible operational costs; Positioning as a leader in the implementation of technological innovations, and a potential increase in LATAM's valuation and/or attraction of sustainable financial capital.
				Aviation, highly dependent on fossil fuels, requires investment in innovation and implementation of low-carbon technology; however, the use of Sustainable Fuels (SAF) is the most viable option in the medium term, at least for flights and routes of more than 1,000 km. Likewise, there are technologies that could be implemented on short or regional flights, but these are still in the process of developing and depend on corporate measures such as the renewal of aircraft or regulatory measures that allow the supply chain to be developed and therefore deployed in regions such as Latin America.
				Results of the scenario analysis:
				- 2025 [Moderate]: Efficiency and decarbonisation opportunities for aviation have been identified and a strategy has been mapped out in the sector for 2025 and 2030 going forward.

				 2030 [High]: Sustained growth in production and availability of SAF is expected from 2028 onwards. In addition, technological innovations in propulsion and airframe systems could increase aircraft efficiency by 10% and 20% in the long term. Regional producers are expected to incentivise the use of more efficient aircraft. 2050 [High]: Up to 65% CO2 reduction in aircraft operation is expected by 2050.
Transiti on policy risk	Exposure to carbon prices that include the aviation sector	to Low ces de on .	2030: High	Increased exposure and prices for carbon that include the aviation sector could result in: Increased operating costs due to the implementation of a carbon tax on Scope 1 emissions;
			2050: Very High	Higher fuel costs due to the implementation of a carbon price that passes through the value chain, increasing operating costs Increased operating costs leading to higher ticket prices, reducing consumer demand and potentially impacting its market share in the region in the event that other airlines are more proactively reducing their energy and carbon footprint.
				In Latin America there are no costs or mechanisms that apply direct costs to the aviation sector, however, there are carbon taxes that in some cases affect fuels such as jet fuel. Also, an increase in carbon costs is expected in developing countries with Net Zero commitments by 2050, such as Chile and Brazil, which could increase fares and reduce demand for regional flights. However, the uptake of SAF and low-carbon technologies are expected to reduce the exposure of these costs in the medium to long term.
				Results of the scenario analysis:

				 2025 [Low]: Currently, no country in Latin America has an emissions trading system, however, Chile, Colombia and Mexico have a tax on fossil fuels, although only in Colombia does it apply to aviation fuels. 2030 [High]: A carbon price is expected to be implemented in all Latin American countries, with an expected price of USD 90 per tCO2e by 2030, an increase of 77% compared to 2022. 2050 [Very high]: The regional carbon price is expected to increase to USD 200 per tCO2e by 2050, an increase of 120% compared to 2022 prices.
Transiti on market risk	Changes in passenger/con sumer behavior and preferences	Low	2030: Low 2050: Moderate	Changes in consumer behaviours regarding aviation and air travel could result in: Reduction in demand for air services due to environmentally conscious customers switching to other means of transportation, possibly reducing revenues; Reduction in business travel revenues, due to an increase remote working and a substitution of business travel for virtual meetings; Changes in demand for certain routes as customers choose to travel less / more locally in an effort to reduce their carbon footprint, possibly reducing demand for long-haul vacation travel and impacting LATAM's strategy and destinations.
				Results of the scenario analysis: - 2025 [Low]: Around 21% of global consumers are expected to prefer cleaner services and products. - 2030 [Low]: A reduction in the aviation sector of 10% and 20% is expected by 2030 and 2050 respectively. Changes in the

Version 1.0

way we work, live, and new technologies will also impact demand for air services.

- 2050 [Moderate]: If SAFs cannot effectively enter into aviation, an increase in air fares could be as high as 18% by 2050. It is expected that in advanced economies, high-speed trains could reduce demand for domestic flights of less than 1000 km by up to 17%.

*For physical risks, a 4°C scenario is used, whereas for transition risks, a 1.5°C scenario was used. More information on the scenario analysis methodology and approach is given in Section 2.3 below.

**For the risks of strong winds and coastal and riverine flooding, the absolute value for 2030 and 2050 was taken into account in determining the rating (as opposed to change vs baseline used for the remaining hazards).

Version 1.0

Table 4. Physical risks rating

	Short-term							
Risk*	Unit	Unity	Very low	Low	Moderate	High	Very high	
Extreme temperatures /	Annual maximum temperature	°C	<28.8	≥28.8 and <32.3	≥32.3 and <35.8	≥35.8 and <40.1	>40.1	
Heat waves	Days over 30°C	days	0	0 - 7	7 - 78	78 - 200	>200	
Heavy rainfall	rx5day	mm	<40	40 - 54	54 - 73	73 - 112	>112	
Coastal/Riverine flooding	Flooding height	m	<0.1	≥0.1 and <0.25	≥0.25 and <0.5	≥0.5 and <1.6	≥1.6	
Tropical cyclones	Saffir-Simpson scale	km/hr	119-153	154-177	178-209	210-249	>250	
Strong winds	Maximum wind speeds	m/s	<16.2	16.2 - 19.3	19.3 - 21.1	21.1 - 23.4	>23.4	
Thunderstorms	rx1day	mm	<21	21 - 27	27 - 37	37 - 55	>55	
			Medium ai	nd long-term				
Risk*	Unit	Unity	Very low	Low	Moderate	High	Very high	
Extreme temperatures / Heat waves	Changes in the annual maximum temperature	°C	<1	≥1 and <2	≥2 and <3	≥3 and <4	≥4	
	Changes in the days over 30°C	days	<3	≥3 and <7	≥7 and <14	≥14 and <21	≥21	
Heavy rainfall	Changes in rx5day	%	<2	≥2 and <5	≥5 and <15	≥15 and <25	≥25	
Coastal/Riverine flooding	Flooding height	m	<0.1	≥0.1 and <0.25	≥0.25 and <0.5	≥0.5 and <1.6	≥1.6	
Tropical cyclones	Changes in the maximum tropical cyclone velocity (TCV)	%	<2.5	≥2.5 and <5	≥5 and <7.5	≥7.5 and <10	≥10	
Strong winds	Maximum wind speeds	m/s	<3	3 - 6	6 - 9	9 - 12	>12	
Thunderstorms	Changes in rx1day	%	<2	≥2 and <5	≥5 and <15	≥15 and <25	≥25	

Version 1.0

Table 5. Transition risks rating

Risk	Very Low	Low	Moderate	High	Very High
Opportunity	Very Low	Low	Moderate	High	Very High
Short Term	Very little/no importance of climate risk/opportunity	Little current relevance of climate risk/opportunity	Some significance of climate risk/opportunity due to current trends that may require adjustments to operations, compliance or focus on certain markets	High level of significance of climate risk/opportunity due to current trends requiring substantial changes to operations, compliance, products, services or business models	High level of significance of climate risk/opportunity that could potentially cause transformational changes in operations, compliance, products, services or business models
Mid to Long Term	Very little or no change in risk/opportunity, e.g. the policy, market, technology landscape will remain the same as in the baseline.	Little change in risk/opportunity, e.g., policy, market, technology landscape will remain similar to baseline	Moderate changes in risk/opportunity that may require adjustments to operations, compliance or approach to certain markets	Significant changes that may require substantial adjustments to operations, compliance, products, services or business models.	Drastic changes that require significant changes to operations, compliance, products, services or business models
	Very little or no	Little additional	Moderate costs will	Material costs will	Serious operational

• Impact of climate-related risks and opportunities on the organization's businesses, strategy, and financial planning.

As the aviation sector is highly exposed to physical and transition climate-related risks and opportunities, direct and indirect impacts could adversely impact LATAM's business and operations. Changes in the climate patterns around the routes can impact and limit operations, affecting critical infrastructure (airports), destinations, and communities in key geographies, and reducing the revenue of the group and subsidiaries. Likewise, from the transition risk perspective, LATAM's operations are affected by local, national, and international regulations, which may require, among other things, action to be taken in relation to the carbon footprint of the company and enhanced resource and waste management. Mismanagement in all these aspects could have a detrimental effect on the group's business and could require LATAM to implement mitigation measures in its operations, fleet, routes, and destinations.

Environmental and social risks are identified and consolidated by the Corporate Affairs and Sustainability Team and subsequently reported to the Risk Management Unit to be included in the group's general risk matrix. Climate-related risks have been identified through this process and included in the corporate risk management process. No other social and environmental risks relevant to the operation were identified.

The sustainability team has a Business Plan, which includes the financial projections associated with the development of the sustainability strategy.

• Resilience of the organization's strategy, taking into consideration different climate-related scenarios including a 2°C or lower scenario.

In 2024, LATAM will start to integrate the findings of the scenario analysis with respect to both physical and transition risks and opportunities into the business strategy and financial planning, enabling the enhancement and/or development of mitigation and/or adaptation actions that ensure LATAM builds resilience to the risks identified, and can capitalize on any climate-related opportunities.

Likewise, in the short- to medium-term, LATAM intends to update its sustainability strategy in order to reflect material climate-related risks and opportunities that have been identified through the TCFD-aligned scenario analysis. This may include strengthening LATAM's climate-related risk assessment and management processes; identifying and integrating additional climate-related metrics and targets specific to material climate change risks and opportunities identified; and expanding on LATAM's efficiency and conservation and restoration initiatives.

3.3. Risk Management

• Organization's processes for identifying and assessing climate-related risks.

LATAM's uses several parallel systems and processes to help identify and assess climate-related risks, including: 1) LATAM's Integrated Safety Management System, which incorporates the Safety, Security, Health, Safety and Environment (HSE) and the Emergency Response Plan, and includes a process to periodically review and identify new/emerging risks. 2) LATAM's monitoring systems used in alignment with International Air Transport Association Environmental Assessment (IEnvA) certification, whereby environmental (including climate) impacts are mapped as part of the risk identification process; and 3) the identification, assessment and prioritization of climate-related risks as identified in the TCFD-aligned climate risk and opportunity analysis undertaken in 2023.

The TCFD-aligned analysis of climate change risks and opportunities offers the most granular view of LATAM's exposure to climate risks, and the risk identification and assessment process (using scenario analysis) is therefore described in more detail in this section.

The scenario analysis was performed in two stages. In the first stage, a baseline and scoping exercise was undertaken with the objective of identifying a full list of potential climate change risks and opportunities for LATAM, from which priority risks and opportunities would be explored in more detail using scenario analysis (stage 2). In order to fully and holistically understand the climate-related risks for LATAM, for the first stage, a set of meetings were held for each country where LATAM has home markets (Brazil, Chile, Colombia, Ecuador and Perú). The objective was to understand, from different perspectives within the company, the climate-related risks, based on the unique understanding of each countries team, and taking into account their areas of expertise and past knowledge in regards to past climate-related events. For each meeting, a key member of the following teams participated:

- Sustainability
- Public Affairs
- Airports
- Ground / air operations
- Commercial / sales

This 'long-list' of climate risks and opportunities was developed by identifying all of the possible climate-related transition and physical risks and opportunities that LATAM may be exposed to, and assessing (at a high level) LATAM's vulnerability to these. To support this assessment, several sources of information were reviewed, including scientific literature, sectoral reports, competitors' disclosures, and input from LATAM stakeholders, to map a comprehensive list of potential risks and opportunities.

More than 20 physical risks and 30 transition risks and opportunities were identified in this initial baseline and scoping phase, and the most relevant and potentially material ones were highlighted and rated according to LATAM's vulnerability as well as the expected level of change under the climate change scenarios in question (+1.5°C and +4°C for transition and physical risks, respectively). The top prioritized risks and opportunities were discussed during a prioritization session with a cross-section of LATAM stakeholders, who were able to provide a comprehensive perspective on the potential impacts of the identified risks on LATAM's business strategy. Following this, a final list of twelve priority risks and opportunities was agreed on for further assessment during the scenario analysis.

In the second stage, scenario analysis was used to assess the prioritized risks and opportunities across two climate scenarios and three time horizons. The time horizons considered for physical climate risks were 2025 (short term/baseline), 2030 (medium term) and 2050 (long term), as changes for physical climate changes are expected to materialize more strongly during the next decades, especially from the middle to the end of the century. Similarly, the time horizons assessed for the transition risk assessment were 2025 (short term/baseline), 2030 (medium term) and 2050 (long term) and 2050 (long term), with a greater focus on the near-to-medium term, as there can be more uncertainty in both the evolution of both the business and operations, and climate and energy-related policies under certain climate scenarios, beyond 2030.

Transition risks and opportunities

The analysis of the transition risks and opportunities considered climate-related risks and opportunities across four main areas: current regulation / emerging regulation and legal risk, technology risk, market risk, and reputational risk. The geographical areas in scope were South America, North America, Europe, and global.

Physical risks

The analysis of physical climate change risks considered two categories of risks: acute and chronic. Acute physical risks refer to event-driven changes, for example, extreme weather such as cyclones, floods, and landslides, whereas chronic physical risks reflect longer-term shifts in climate patterns, for example, an increase in the frequency of droughts. The geographical locations considered for this analysis were the countries with key sites, routes, or hubs for LATAM's operations: Argentina, Brazil, Ecuador, Colombia, Peru, Bolivia, Uruguay, Paraguay, Dominican Republic, The Bahamas, United States, Chile, Mexico, and Spain

The climate scenarios that were used as a basis for the analysis are presented in Table 6.

Type of scenario	Scenario	Temperature change by 2100	Description	Selection of scenarios
Physical risks	SSP5-8.5	+4°C (3.3– 5.7°C)	This represents a 'worst-case' warming scenario, with global mean temperature increases of >4°C by the end of the century compared to preindustrial levels bringing significant changes to climate and weather patterns	The IPCC's SSP5-8.5 scenario was considered in the analysis, as it aligns with TCFD's recommendations by representing an extreme ('worst case') future in the spectrum of potential futures
Transition risks	1.5℃-aligne d	1.5°C	This represents a 'best-case' climate change scenario where stringent climate policies and carbon pricing limit global temperature increases to $\sim 1.5^{\circ}$ C to 1.7° C by end-century. The International Energy Agency's Net Zero Emissions by 2050 (NZE) is used as the main scenario, with information from regional scenarios used where NZE scenario information is not available	This scenario is based on the IEA scenarios, which are in line with the TCFD recommendations, as well as being well-known and widely used, and represents a 'rapid low-carbon transition scenario' with significant policy/legal, market, technology and reputational changes

Table 6. Scenarios assessed during the climate risk assessment

Based on the scenario projections, risks and opportunities were rated as very high, high, moderate, low, very low, or uncertain, with definition of the rating varying depending on the timeframe in question:

- Short-term / baseline (2025): The rating assigned for the short-term/baseline (2025) time horizon represents the absolute rating of the risk, which considers its current criticality and relevance for LATAM's operations.
- Medium- and long-term (2030 and 2050): The rating assigned to the medium (2030) and long-term (2050) time horizons represents the magnitude of change in the risk / opportunity under the scenario in question compared to the baseline (2025).
- Organization's processes for managing climate-related risks.

As of 2022, LATAM has undertaken several initiatives to manage climate-related risks and enhance the sustainability and environmental performance of the group. In particular, the following initiatives help us to manage some of the climate change transition risks assessed above: the monitoring of environmental measures concerning the GHG footprint, the use and implementation of sustainable aviation fuels (SAFs), and improving circularity in the use of resources.

• Processes for identifying, assessing, and managing climate-related risks are integrated into the organization's overall risk management.

LATAM has already identified climate-related risks and opportunities, specifically linked to the air transport industry; however, non-climate-related risks are already integrated into the company's general risk management after being consolidated by the Corporate Affairs and Sustainability Team. The Risk Management Unit is reviewing the assessment of the climate-related risks and opportunities and is planning to include (as required) the results and findings of the identified climate-related risks and opportunities in LATAM's general risk management system.

From 2024 onwards LATAM intends to carry out an annual process to identify, assess, prioritize, and integrate climate-related risks as part of the Integrated Safety Management System. The general process for risk management is outlined in the section above.

3.4. Metrics and targets

• Metrics used by the organization to assess climate-related risks and opportunities in line with its strategy and risk management process.

Within the sections 'Commitment with the future' and the sub-sections 'climate change and environmental management', and 'eco-efficiency' in our integrated report, LATAM discloses climate-related metrics and targets to measure and monitor material risks, and has initiated corporate programs to improve the use of resources and reduce its carbon footprint. Data related to the GHG emissions broken down by Scope can be found in the 'Metrics & targets' section of this document, with additional climate-related metrics currently being tracked presented in Table 7.

Table 7. Overview of LATAM's key climate-related metrics

Metric	Overview	2020	2021	2022
Emissions intensity	Emissions intensity in the total operation Measured in kg CO ₂ e/100 RTK (Revenue tonne-kilometer) Tracked since 2013	76.87	80.76	101.80
Emissions intensity	Emissions intensity in the air operations Measured in kg CO ₂ e/100 RTK (Revenue tonne-kilometer) Tracked since 2013	76.31	80.55	76.67
Energy intensity	Energy intensity from ground and air operations Measured in MWh/RTK (Revenue tonne-kilometer) Tracked since 2013	1.4	2.2	1.7
Atmospheric (non-CO ₂) GHG emissions	Produced emissions of NO _x Measured in tonnes Tracked since 2013	19,207	22,184	33,198
Atmospheric (non-CO ₂) GHG emissions	Produced emissions of SO _x Measured in tonnes Tracked since 2013	851	983	1,470
Internal energy consumption (non-renewable)	Total fuels and electricity from non-renewable sources Measured in Terajoules (TJ) Tracked since 2013	76,970.35	88,993.70	134,251.7 2
Internal energy consumption (renewable)	Ethanol and electricity from renewable sources Measured in TJ Tracked since 2016	77,076.18	89,112.08	134,436.7 1
Water withdrawn	Water withdrawn from municipal networks Measured in m ³ Tracked since 2013	82,480	98,846	85,656
Waste	Total waste (hazardous and	6,583	28,803	37,990

 Title
 Report Aligned with the 11 TCFD recommendations

 Version
 1.0

management	non-hazardous)
	Measured in tonnes
	Tracked since 2013

• Scope 1, Scope 2, and if appropriate, Scope 3 greenhouse gas (GHG) emissions, and the related risks.

Measuring the carbon footprint of LATAM Airlines Group S.A.'s operations is a key part of the group's sustainability strategy, and since 2012 the group has been accounting for emissions in accordance with the ISO 14064 standard and the Greenhouse Gas Protocol framework. The descriptions of emissions sources included in each Scope are outlined in Table 8, and the results of the GHG accounting for 2022, and the prior three reporting years, are disclosed in Table 9.

Table 8. Description of each GHG emissions scope

Scope	Description
Scope 1	Emissions directly generated from sources owned or controlled by LATAM
Scope 2	Emissions generated by the generation of purchased electricity
Scope 3	Emissions indirectly generated as a result of the activities of the company from sources that the company does not own or control

Table 9. LATAM's GHG emissions for 2019–2022 divided by scope, in tonnes of CO_2 equivalent

Scope	Sub-category	2019	2020	2021	2022
Scope 1	Direct emissions	12,149,72 5	5,614,368	6,497,576	9,780,288
Scope 2	Indirect emissions	18,423	16,355	14,549	7,150
Scope 3 (total)	Other indirect emissions	218,174	24,827	2,446	3,198,317
Scope 3	Category 1 (Purchased goods and services)	N/A	N/A	N/A	1,100,644
Scope 3	Category 2 (Capital goods)	N/A	N/A	N/A	N/A
Scope 3	Category 3 (Fuel & energy related activities) (passengers)	N/A	N/A	N/A	1,836,131
Scope 3	Category 3 (Fuel- and energy-related activities) (cargo)	N/A	N/A	N/A	194,578
Scope 3	Category 4 (Upstream transportation and distribution)	N/A	N/A	N/A	37,637
Scope 3	Category 5 (Waste generated in operations)	N/A	N/A	N/A	2,091
Scope 3	Category 6	N/A	N/A	N/A	14,582

Version 1.0

	(Business travel)				
Scope 3	Category 7 (Employee commuting)	N/A	N/A	N/A	12,364
Scope 3	Category 9 (Downstream transportation and distribution)	N/A	N/A	N/A	N/A
Total (Scope 1, 2 &3)	N/A	12,386,32 3	5,655,551	6,514,570	12,985,755
Emissions compensated (LATAM)	N/A	N/A	N/A	N/A	572,782
Emissions compensated (clients)	N/A	N/A	N/A	N/A	33,184

According to the group's GHG inventory, the company has seen a 20% decrease in Scope 1 emissions compared to the base year of 2019, reaching 9,780,288 tonnes of CO2 equivalent in 2022, in addition to reporting an amount of compensated emissions of around 572,782 thousand tonnes of CO2 equivalent, through carbon credits. Likewise, by 2022 the emissions inventory reported a total of 12,985,755 uncompensated emissions, of which Scope 1 accounts for 75.3%, Scope 2 for 0.1%, and Scope 3 for 24.6% of the total.

Post-pandemic (2022), an increase in Scope 1 net emissions was observed due to the recovery of operations in all countries. However, emissions intensity in air operations was reduced by 4.8% compared to 2021, demonstrating the effectiveness of activities to improve operational efficiency including under the Fuel Efficiency framework, LATAM's Fuel Efficiency program, initiatives implemented included the optimization of routes and flight plans, implementation of Descent Profile Optimization (DPO), and rationalization of the use of the auxiliary engine.

For the year 2022, as part of the process of continuous improvement in the calculation of the GHG footprint, the granularity of Scope 3 accounting was increased, incorporating five new categories in all countries, throughout the value chain. There are a total of seven categories included in the Scope 3 footprint: indirect emissions from land transportation related to operations (employees, suppliers,

and waste), air travel (in other companies) of employees in work activities, purchase of goods and services, capital goods, emissions related to fuel and energy (cargo and passengers), waste generated in the operation, and emissions generated by indirect transportation (performed by an external supplier). In previous years (2019 to 2021), only indirect emissions from ground transportation related to operations (employees, suppliers, and waste) and air travel (in other companies) of employees in work activities, respectively, were considered for this scope. Scope 3 categories 8 to 12 are excluded as they are not applicable to LATAM, except for operations in Brazil where category 9 (downstream transport and distribution) applies. However, categories 13 to 15, as part of the company's continuous improvement process, are expected to be reviewed for their eventual applicability.

• Targets used by the organization to manage climate-related risks and opportunities and performance against targets.

LATAM's climate objectives are currently focused on reducing the carbon and waste footprint, and improving energy and fuel efficiency across all LATAM operations. LATAM has therefore established the following climate-related targets:

- Achieve carbon neutrality in air and land operations by 2050
- Be zero waste to landfill by 2027
- Reduce by 95% the use of single-use plastics across all LATAM operations by 2023

LATAM has also begun to implement water saving initiatives, starting with a communication campaign for the saving and efficient use of resources (including corporate buildings and maintenance).

4. Annexes

4.1. Detailed images/maps of physical risks

For the physical risk levels described in this Annex, the medium term refers to the year 2030 and the long term to 2050.

Risk Level - Maximum Temperatures

Comparison of maximum temperature indicator risk levels at LATAM Airlines' main airports for medium and long term, under a high emissions scenario.

Risk Level - Days exceeding 30°C

Comparison of risk levels of the indicator of number of days exceeding 30°C at LATAM Airlines' main airports for the medium and long term, under a high emissions scenario.

Risk Level - Coastal flood height

Comparison of the average coastal flooding height at LATAM Airlines' main airports for the medium and long term, under a high emissions scenario.

Risk Level - Riverine flood height

Comparison of average riverine flood heights at LATAM Airlines' main airports for the medium and long term, under a high emissions scenario.

Risk Level - rx5day

Comparison of the risk levels of the five consecutive days with the highest rainfall at LATAM Airlines' main airports for the medium and long term, under a high emissions scenario.

Risk Level - rx1day

Comparison of annual maximum rainfall risk levels at LATAM Airlines' main airports for the medium and long term, under a high emissions scenario.

Risk Level - Annual maximum speeds

Comparison of risk levels of annual maximum speeds at LATAM Airlines' main airports for the medium and long term, under a high emissions scenario.

Risk Level - Tropical cyclone velocity (TCV)

Comparison of risk levels of maximum tropical cyclone velocities at LATAM Airlines' main airports for the medium and long term, under a high-emission scenario.

4.2. Detailed results of physical scenarios by airport

2030: Extreme Temperatures / Heat Waves

Changes in annual maximum temperature

Aeropuerto	ICAO code	
Adolfo Suarez Madrid-Barajas Airport	MAD	2.09
Aeroporto de São Paulo/Congonhas	CGH	1.36
Aeroporto Internacional do Rio de Janeiro - Galeão	GIG	0.98
Alejandro Velasco Astete International Airport	CUZ	0.84
Brasilia International Airport (Presidente J. Kubitschek In	BSB	1.22
Cad. FAP Guillermo del Castillo Paredes Airport	TPP	1.19
Cap. FAP Pedro Canga Rodriguez Airport	TBP	0.76
Capitan FAP VIctor Montes Arias International Airport	TYL	0.77
Carrasco Gral. Cesareo L. Berisso International Airport	MVD	0.73
Carriel Sur International Airport	CCP	0.90
Cerro Moreno International Airport	ANF	0.90
Ciudad de Catamayo Airport	LOH	0.77
Comodoro Arturo Merino Benitez International Airport	SCL	0.88
Coronel FAP Carlos Ciriani Santa Rosa International Airport	TCQ	0.80
Coronel FAP Francisco Secada Vignetta International Airp	IQT	1.37
Diego Aracena International Airport	IQQ	0.98
El Dorado International Airport	BOG	1.20
El Loa Airport	CJC	1.20
El Tepual Airport	PMC	1.23
Eloy Alfaro International Airport	MEC	0.74
FAP Captain Carlos Martinez de Pinillos International Airp	TRU	0.82
FAP Captain Guillermo Concha Iberico International Airport	PIU	0.70
FAP Captain Jose Abelardo Quinones Gonzales Internation	CIX	0.82
Francisco Carle Airport	JAU	1.03
Francisco de Orellana Airport	OCC	0.87
Gustavo Rojas Pinilla International Airport	ADZ	0.77
Hercilio Luz International Airport	FLN	0.89
Ilo Airport	ILQ	0.86

Inca Manco Capac International Airport	JUL	0.967
Jaen Airport	JAE	0.835
John F. Kennedy International Airport	JFK	1.492
Joinville-Lauro Carneiro de Loyola Airport	JOI	1.068
Jorge Chavez International Airport	LIM	0.870
Jose Joaquin de Olmedo International Airport	GYE	0.727
Jose Maria Cordova International Airport	MDE	1.043
Lynden Pindling International Airport	NAS	0.903
Mario Pereira Lopes Airport	QSC	1.705
Mariscal Lamar International Airport	CUE	0.403
Mariscal Sucre International Airport	UIO	0.742
Mataveri International Airport (Isla de Pascua Airport)	IPC	0.396
Mayor General FAP Armando Revoredo Iglesias Airport	CJA	0.903
Mexico City International Airport	MEX	1.298
Miami International Airport	MIA	0.722
Ministro Pistarini International Airport	EZE	1.152
Navegantes-Ministro Victor Konder International Airport	NVT	0.917
Orlando International Airport	MCO	0.892
Presidente Carlos Ibanez del Campo International Airport	PUQ	1.013
Punta Cana International Airport	PUJ	0.893
Rodriguez Ballon International Airport	AQP	0.897
Salgado Filho International Airport	POA	1.042
San Cristobal Airport	SCY	0.828
Santos Dumont Airport	SDU	0.938
São Paulo-Guarulhos International Airport	GRU	1.533
Seymour Airport	GPS	0.808
Silvio Pettirossi International Airport	ASU	1.210
Viru Viru International Airport	VVI	1.720

2050: Extreme Temperatures / Heat Waves

Changes in annual maximum temperature

Aeropuerto	ICAO code	
Adolfo Suarez Madrid-Barajas Airport	MAD	3.706
Aeroporto de São Paulo/Congonhas	CGH	2.338
Aeroporto Internacional do Rio de Janeiro - Gal	GIG	1.970
Alejandro Velasco Astete International Airport	CUZ	2.020
Brasilia International Airport (Presidente J. Ku	BSB	2.807
Cad. FAP Guillermo del Castillo Paredes Airport	TPP	2.514
Cap. FAP Pedro Canga Rodriguez Airport	ТВР	1.638
Capitan FAP VIctor Montes Arias International	TYL	1.730
Carrasco Gral. Cesareo L. Berisso International	MVD	1.795
Carriel Sur International Airport	CCP	1.660
Cerro Moreno International Airport	ANF	1.780
Ciudad de Catamayo Airport	LOH	1.525
Comodoro Arturo Merino Benitez Internationa	SCL	1.862
Coronel FAP Carlos Ciriani Santa Rosa Internat	TCQ	1.953
Coronel FAP Francisco Secada Vignetta Intern	IQT	2.817
Diego Aracena International Airport	IQQ	1.910
El Dorado International Airport	BOG	2.550
El Loa Airport	CJC	2.365
El Tepual Airport	PMC	2.038
Eloy Alfaro International Airport	MEC	1.710
FAP Captain Carlos Martinez de Pinillos Intern	TRU	1.808
FAP Captain Guillermo Concha Iberico Internat	PIU	1.763
FAP Captain Jose Abelardo Quinones Gonzales	CIX	1.743
Francisco Carle Airport	JAU	2.173
Francisco de Orellana Airport	OCC	1.990
Gustavo Rojas Pinilla International Airport	ADZ	1.600
Hercilio Luz International Airport	FLN	1.572
Ilo Airport	ILQ	1.890

Inca Manco Capac International Airport	JUL	2.000
Jaen Airport	JAE	2.028
John F. Kennedy International Airport	JEK	2.473
Joinville-Lauro Carneiro de Loyola Airport	JOI	1.877
Jorge Chavez International Airport	LIM	1.828
Jose Joaquin de Olmedo International Airport	GYE	1.810
Jose Maria Cordova International Airport	MDE	2.162
Lynden Pindling International Airport	NAS	1.622
Mario Pereira Lopes Airport	QSC	3.233
Mariscal Lamar International Airport	CUE	1.453
Mariscal Sucre International Airport	UIO	1.986
Mataveri International Airport (Isla de Pascua	IPC	0.890
Mayor General FAP Armando Revoredo Iglesia	CJA	2.238
Mexico City International Airport	MEX	2.637
Miami International Airport	MIA	1.688
Ministro Pistarini International Airport	EZE	2.017
Navegantes-Ministro Victor Konder Internatio	NVT	1.562
Orlando International Airport	MCO	1.803
Presidente Carlos Ibanez del Campo Internatio	PUQ	1.595
Punta Cana International Airport	PUJ	1.537
Rodriguez Ballon International Airport	AQP	2.048
Salgado Filho International Airport	POA	1.777
San Cristobal Airport	SCY	1.602
Santos Dumont Airport	SDU	1.903
São Paulo-Guarulhos International Airport	GRU	2.595
Seymour Airport	GPS	1.687
Silvio Pettirossi International Airport	ASU	2.712
Viru Viru International Airport	VVI	3.167

2030: Extreme Temperatures / Heat Waves

Changes in the number of days exceeding 30°C

Aeropuerto	ICAO code	
Adolfo Suarez Madrid-Barajas Airport	MAD	22.12
Aeroporto de São Paulo/Congonhas	CGH	22.73
Aeroporto Internacional do Rio de Janeiro - Galeão	GIG	41.53
Alejandro Velasco Astete International Airport	CUZ	0.00
Brasilia International Airport (Presidente J. Kubitsche	BSB	63.82
Cad. FAP Guillermo del Castillo Paredes Airport	TPP	7.27
Cap. FAP Pedro Canga Rodriguez Airport	TBP	28.37
Capitan FAP VIctor Montes Arias International Airport	TYL	34.87
Carrasco Gral. Cesareo L. Berisso International Airport	MVD	9.02
Carriel Sur International Airport	CCP	1.62
Cerro Moreno International Airport	ANF	0.12
Ciudad de Catamayo Airport	LOH	2.22
Comodoro Arturo Merino Benitez International Airport	SCL	6.23
Coronel FAP Carlos Ciriani Santa Rosa International Ai	TCQ	38.72
Coronel FAP Francisco Secada Vignetta International A	IQT	17.43
Diego Aracena International Airport	IQQ	0.08
El Dorado International Airport	BOG	0.00
El Loa Airport	CJC	0.00
El Tepual Airport	PMC	1.78
Eloy Alfaro International Airport	MEC	57.23
FAP Captain Carlos Martinez de Pinillos International	TRU	41.00
FAP Captain Guillermo Concha Iberico International Ai	PIU	41.25
FAP Captain Jose Abelardo Quinones Gonzales Interna	CIX	32.28
Francisco Carle Airport	JAU	0.00
Francisco de Orellana Airport	OCC	23.18
Gustavo Rojas Pinilla International Airport	ADZ	2.78
Hercilio Luz International Airport	FLN	9.62
Ilo Airport	11.0	3.00

Inca Manco Capac International Airport	JUL	0.00
Jaen Airport	JAE	52.32
John F. Kennedy International Airport	JFK	21.83
Joinville-Lauro Carneiro de Loyola Airport	JOI	20.60
Jorge Chavez International Airport	LIM	12.50
Jose Joaquin de Olmedo International Airport	GYE	8.97
Jose Maria Cordova International Airport	MDE	0.00
Lynden Pindling International Airport	NAS	35.62
Mario Pereira Lopes Airport	QSC	54.53
Mariscal Lamar International Airport	CUE	1.10
Mariscal Sucre International Airport	UIO	0.38
Mataveri International Airport (Isla de Pascua Airport)	IPC	0.00
Mayor General FAP Armando Revoredo Iglesias Airport	CJA	0.00
Mexico City International Airport	MEX	16.95
Miami International Airport	MIA	30.13
Ministro Pistarini International Airport	EZE	12.20
Navegantes-Ministro Victor Konder International Airp	NVT	17.50
Orlando International Airport	MCO	24.80
Presidente Carlos Ibanez del Campo International Airp	PUQ	0.00
Punta Cana International Airport	PUJ	82.03
Rodriguez Ballon International Airport	AQP	0.90
Salgado Filho International Airport	POA	20.48
San Cristobal Airport	SCY	0.00
Santos Dumont Airport	SDU	40.95
São Paulo-Guarulhos International Airport	GRU	19.27
Seymour Airport	GPS	0.03
Silvio Pettirossi International Airport	ASU	24.77
Viru Viru International Airport	VVI	38.33

2050: Extreme Temperatures / Heat Waves

Changes in the number of days exceeding 30°C

Aeropuerto	ICAO code	
Adolfo Suarez Madrid-Barajas Airport	MAD	37.0
Aeroporto de São Paulo/Congonhas	CGH	51.1
Aeroporto Internacional do Rio de Janeiro - Galeão	GIG	86.6
Alejandro Velasco Astete International Airport	CUZ	0.0
Brasilia International Airport (Presidente J. Kubitschek I	BSB	125.2
Cad. FAP Guillermo del Castillo Paredes Airport	TPP	9.3
Cap. FAP Pedro Canga Rodriguez Airport	TBP	40.4
Capitan FAP VIctor Montes Arias International Airport	TYL	69.6
Carrasco Gral. Cesareo L. Berisso International Airport	MVD	22.2
Carriel Sur International Airport	CCP	4.5
Cerro Moreno International Airport	ANF	0.4
Ciudad de Catamayo Airport	LOH	8.5
Comodoro Arturo Merino Benitez International Airport	SCL	16.3
Coronel FAP Carlos Ciriani Santa Rosa International Airpo	TCQ	81.8
Coronel FAP Francisco Secada Vignetta International Airp	IQT	23.2
Diego Aracena International Airport	IQQ	0.6
El Dorado International Airport	BOG	0.0
El Loa Airport	CJC	0.0
El Tepual Airport	PMC	3.8
Eloy Alfaro International Airport	MEC	147.7
FAP Captain Carlos Martinez de Pinillos International Air	TRU	95.9
FAP Captain Guillermo Concha Iberico International Airpo	PIU	79.7
FAP Captain Jose Abelardo Quinones Gonzales Internatio	CIX	65.9
Francisco Carle Airport	JAU	0.0
Francisco de Orellana Airport	OCC	30.9
Gustavo Rojas Pinilla International Airport	ADZ	14.3
Hercilio Luz International Airport	FLN	27.2
Ilo Airport	ILQ	16.9

Inca Manco Capac International Airport	JUL	0.1
Jaen Airport	JAE	141.4
John F. Kennedy International Airport	JFK	40.7
Joinville-Lauro Carneiro de Loyola Airport	JOI	43.0
Jorge Chavez International Airport	LIM	40.0
Jose Joaquin de Olmedo International Airport	GYE	11.5
Jose Maria Cordova International Airport	MDE	0.1
Lynden Pindling International Airport	NAS	61.1
Mario Pereira Lopes Airport	QSC	103.3
Mariscal Lamar International Airport	CUE	5.8
Mariscal Sucre International Airport	UIO	3.4
Mataveri International Airport (Isla de Pascua Airport)	IPC	0.0
Mayor General FAP Armando Revoredo Iglesias Airport	CJA	0.0
Mexico City International Airport	MEX	45.3
Miami International Airport	MIA	54.9
Ministro Pistarini International Airport	EZE	26.3
Navegantes-Ministro Victor Konder International Airport	NVT	41.7
Orlando International Airport	MCO	45.2
Presidente Carlos Ibanez del Campo International Airport	PUQ	0.0
Punta Cana International Airport	PUJ	142.7
Rodriguez Ballon International Airport	AQP	6.1
Salgado Filho International Airport	POA	40.8
San Cristobal Airport	SCY	0.0
Santos Dumont Airport	SDU	85.3
São Paulo-Guarulhos International Airport	GRU	43.6
Seymour Airport	GPS	1.0
Silvio Pettirossi International Airport	ASU	50.0
Viru Viru International Airport	VVI	59.6

Coastal Flooding

Flood height (m)

Aeropuerto	Clave	2030	2050
Jose Joaquin de Olmedo International Airp	GYE	0.090	0.099
Santos Dumont Airport	SDU	0.067	0.076
Gustavo Rojas Pinilla International Airport	ADZ	0.026	0.043
Navegantes-Ministro Victor Konder Intern	NVT	0.035	0.039
Eloy Alfaro International Airport	MEC	0.029	0.031
FAP Captain Carlos Martinez de Pinillos Int	TRU	0.020	0.024
Seymour Airport	GPS	0.020	0.023
Carrasco Gral. Cesareo L. Berisso Internati	MVD	0.008	0.010
Presidente Carlos Ibanez del Campo Intern	PUQ	0.005	0.006
Punta Cana International Airport	PUJ	0.002	0.005
Jorge Chavez International Airport	LIM	0.002	0.004

Riverine Flooding

Flood height (m)

Aeropuerto	Clave	2030	2050
Francisco de Orellana Airport	OCC	1.54	1 1.638
Coronel FAP Francisco Secada Vignetta Int	IQT	0.84	4 1.357
Gustavo Rojas Pinilla International Airport	ADZ	0.72	0.769
John F. Kennedy International Airport	JFK	0.63	0.629
Navegantes-Ministro Victor Konder Intern.	NVT	0.25	0.245
Aeroporto Internacional do Rio de Janeiro	GIG	0.17	0.189
Jose Joaquin de Olmedo International Airp	GYE	0.12	0.144
FAP Captain Guillermo Concha Iberico Inter	PIU	0.13	0.136
Carriel Sur International Airport	CCP	0.11	.9 0.124
Ciudad de Catamayo Airport	LOH	0.11	.5 0.122
Seymour Airport	GPS	0.11	.2 0.115
Salgado Filho International Airport	POA	0.09	0.105
Joinville-Lauro Carneiro de Loyola Airport	JOI	0.10	0.097
Cad. FAP Guillermo del Castillo Paredes Air	TPP	0.04	0 0.072
Francisco Carle Airport	JAU	0.06	0.072
FAP Captain Jose Abelardo Quinones Gonza	CIX	0.06	0.068
Punta Cana International Airport	PUJ	0.05	0.061
Mexico City International Airport	MEX	0.05	0.051
Inca Manco Capac International Airport	JUL	0.04	0.046
Hercilio Luz International Airport	FLN	0.03	0.042
Mariscal Sucre International Airport	UIO	0.03	0.035
Silvio Pettirossi International Airport	ASU	0.03	0.034
El Dorado International Airport	BOG	0.01	.3 0.033
Comodoro Arturo Merino Benitez Internati	SCL	0.03	0.030
Jorge Chavez International Airport	LIIVI	0.02	2 0.024
Santos Dumont Airport	SDU	0.02	0.024
Viru Viru International Airport	VVI	0.02	2 0.023
Presidente Carlos Ibanez del Campo Intern.	PUQ	0.02	2 0.022
Miami International Airport	IVIIA	0.02	0.022
Cap. FAP Pedro Canga Rodriguez Airport	IBP	0.01	9 0.021
Rodriguez Ballon International Airport	AQP	0.01	4 0.014
Carrasco Grai. Cesareo L. Berisso Internati		0.00	0.010
Aeroporto de Sao Paulo/Congonnas	CGH	0.00	0.010
Winistro Pistarini international Airport	EZE	0.00	0.009
TO Airport EAD Captain Carlos Martinez de Dinillos Int	TRU	0.00	0.007
Elov Alfara International Airport	MEC	0.00	0.007
Mayor General EAD Armando Devorado Jalo	CIA	0.00	0.006
São Paulo Guarulhos International Airport	GDU	0.00	0.003
El Los Airport	CIC	0.00	0.002
		0.00	T 0.001

Aeropuertos que no aparecen en la lista no tienen proyectada ninguna altura de inundación

2030: Heavy rainfall

Relative changes in rx5day (%)

Aeropuerto	ICAO code	
Adolfo Suarez Madrid-Barajas Airport	MAD	-1.53%
Aeroporto de São Paulo/Congonhas	CGH	4.189
Aeroporto Internacional do Rio de Janeiro - Galeão	GIG	3.57%
Alejandro Velasco Astete International Airport	CUZ	9.41%
Brasilia International Airport (Presidente J. Kubitschek Int'l A	BSB	5.29%
Cad. FAP Guillermo del Castillo Paredes Airport	TPP	4.219
Cap. FAP Pedro Canga Rodriguez Airport	TBP	7.27%
Capitan FAP VIctor Montes Arias International Airport	TYL	11.29%
Carrasco Gral. Cesareo L. Berisso International Airport	MVD	2.70%
Carriel Sur International Airport	CCP	-1.67%
Cerro Moreno International Airport	ANF	-2.119
Ciudad de Catamayo Airport	LOH	5.72%
Comodoro Arturo Merino Benitez International Airport	SCL	-4.18%
Coronel FAP Carlos Ciriani Santa Rosa International Airport	TCQ	1.82%
Coronel FAP Francisco Secada Vignetta International Airport	IQT	4.149
Diego Aracena International Airport	IQQ	5.95%
El Dorado International Airport	BOG	5.88%
El Loa Airport	CJC	0.97%
El Tepual Airport	PMC	2.20%
Eloy Alfaro International Airport	MEC	10.40%
FAP Captain Carlos Martinez de Pinillos International Airport	TRU	6.77%
FAP Captain Guillermo Concha Iberico International Airport	PIU	8.99%
FAP Captain Jose Abelardo Quinones Gonzales International	CIX	6.68%
Francisco Carle Airport	JAU	14.57%
Francisco de Orellana Airport	OCC	3.46%
Gustavo Rojas Pinilla International Airport	ADZ	1.15%
Hercilio Luz International Airport	FLN	4.27%
Ilo Airport	ILQ	2.819

Inca Manco Capac International Airport	JUL	6.64%
Jaen Airport	JAE	5.81%
John F. Kennedy International Airport	JFK	6.50%
Joinville-Lauro Carneiro de Loyola Airport	JOI	4.88%
Jorge Chavez International Airport	LIM	13.35%
Jose Joaquin de Olmedo International Airport	GYE	5.29%
Jose Maria Cordova International Airport	MDE	7.67%
Lynden Pindling International Airport	NAS	0.37%
Mario Pereira Lopes Airport	QSC	5.08%
Mariscal Lamar International Airport	CUE	4.12%
Mariscal Sucre International Airport	UIO	4.85%
Mataveri International Airport (Isla de Pascua Airport)	IPC	1.48%
Mayor General FAP Armando Revoredo Iglesias Airport	CJA	8.24%
Mexico City International Airport	MEX	2.26%
Miami International Airport	MIA	3.93%
Ministro Pistarini International Airport	EZE	5.82%
Navegantes-Ministro Victor Konder International Airport	NVT	5.33%
Orlando International Airport	MCO	4.11%
Presidente Carlos Ibanez del Campo International Airport	PUQ	2.09%
Punta Cana International Airport	PUJ	1.67%
Rodriguez Ballon International Airport	AQP	3.85%
Salgado Filho International Airport	POA	6.32%
San Cristobal Airport	SCY	15.00%
Santos Dumont Airport	SDU	3.87%
São Paulo-Guarulhos International Airport	GRU	4.90%
Seymour Airport	GPS	21.80%
Silvio Pettirossi International Airport	ASU	4.43%
Viru Viru International Airport	1/1/1	4 05%

2050: Heavy rainfall

Relative changes in rx5day (%)

Aeropuerto	ICAO code	
Adolfo Suarez Madrid-Barajas Airport	MAD	0.889
Aeroporto de São Paulo/Congonhas	CGH	7.059
Aeroporto Internacional do Rio de Janeiro - Galeão	GIG	6.679
Alejandro Velasco Astete International Airport	CUZ	18.919
Brasilia International Airport (Presidente J. Kubitschek Int'l A	BSB	7.429
Cad. FAP Guillermo del Castillo Paredes Airport	TPP	7.849
Cap. FAP Pedro Canga Rodriguez Airport	TBP	13.549
Capitan FAP VIctor Montes Arias International Airport	TYL	21.569
Carrasco Gral. Cesareo L. Berisso International Airport	MVD	7.449
Carriel Sur International Airport	CCP	-5.439
Cerro Moreno International Airport	ANF	5.259
Ciudad de Catamayo Airport	LOH	7.979
Comodoro Arturo Merino Benitez International Airport	SCL	-9.589
Coronel FAP Carlos Ciriani Santa Rosa International Airport	TCQ	2.849
Coronel FAP Francisco Secada Vignetta International Airport	IQT	7.889
Diego Aracena International Airport	IQQ	-3.289
El Dorado International Airport	BOG	12.969
El Loa Airport	CJC	15.009
El Tepual Airport	PMC	-0.199
Eloy Alfaro International Airport	MEC	16.029
FAP Captain Carlos Martinez de Pinillos International Airport	TRU	26.009
FAP Captain Guillermo Concha Iberico International Airport	PIU	19.779
FAP Captain Jose Abelardo Quinones Gonzales International	CIX	19.559
Francisco Carle Airport	JAU	46.429
Francisco de Orellana Airport	000	9.319
Francisco de orenana Airporc	000	
Gustavo Rojas Pinilla International Airport	ADZ	-0.669
Gustavo Rojas Pinilla International Airport Hercilio Luz International Airport	ADZ FLN	-0.669

Inca Manco Capac International Airport	JUL	11.71%
Jaen Airport	JAE	14.22%
John F. Kennedy International Airport	JFK	9.89%
Joinville-Lauro Carneiro de Loyola Airport	JOI	10.76%
Jorge Chavez International Airport	LIM	28.78%
Jose Joaquin de Olmedo International Airport	GYE	9.80%
Jose Maria Cordova International Airport	MDE	14.81%
Lynden Pindling International Airport	NAS	-1.30%
Mario Pereira Lopes Airport	QSC	7.02%
Mariscal Lamar International Airport	CUE	9.11%
Mariscal Sucre International Airport	UIO	12.03%
Mataveri International Airport (Isla de Pascua Airport)	IPC	1.12%
Mayor General FAP Armando Revoredo Iglesias Airport	CJA	18.09%
Mexico City International Airport	MEX	5.40%
Miami International Airport	MIA	3.50%
Ministro Pistarini International Airport	EZE	8.57%
Navegantes-Ministro Victor Konder International Airport	NVT	9.49%
Orlando International Airport	MCO	5.24%
Presidente Carlos Ibanez del Campo International Airport	PUQ	5.18%
Punta Cana International Airport	PUJ	-0.93%
Rodriguez Ballon International Airport	AQP	11.01%
Salgado Filho International Airport	POA	10.97%
San Cristobal Airport	SCY	34.77%
Santos Dumont Airport	SDU	6.47%
São Paulo-Guarulhos International Airport	GRU	7.68%
Seymour Airport	GPS	33.46%
Silvio Pettirossi International Airport	ASU	7.98%
Viru Viru International Airport	VVI	8.25%

2030: Thunderstorms

Relative changes in rx1day (%)

Aeropuerto	ICAO code	
Adolfo Suarez Madrid-Barajas Airport	MAD	0.009
Aeroporto de São Paulo/Congonhas	CGH	6.009
Aeroporto Internacional do Rio de Janeiro - Galeão	GIG	7.00%
Alejandro Velasco Astete International Airport	CUZ	8.00%
Brasilia International Airport (Presidente J. Kubitschek In	BSB	7.009
Cad. FAP Guillermo del Castillo Paredes Airport	TPP	6.009
Cap. FAP Pedro Canga Rodriguez Airport	TBP	13.009
Capitan FAP VIctor Montes Arias International Airport	TYL	10.009
Carrasco Gral. Cesareo L. Berisso International Airport	MVD	6.009
Carriel Sur International Airport	CCP	0.00%
Cerro Moreno International Airport	ANF	
Ciudad de Catamayo Airport	LOH	8.00%
Comodoro Arturo Merino Benitez International Airport	SCL	0.009
Coronel FAP Carlos Ciriani Santa Rosa International Airport	TCQ	4.009
Coronel FAP Francisco Secada Vignetta International Airp	IQT	8.009
Diego Aracena International Airport	IQQ	3.009
El Dorado International Airport	BOG	8.009
El Loa Airport	CJC	6.009
El Tepual Airport	PMC	2.009
Eloy Alfaro International Airport	MEC	10.009
FAP Captain Carlos Martinez de Pinillos International Airp	TRU	5.009
FAP Captain Guillermo Concha Iberico International Airport	PIU	9.009
FAP Captain Jose Abelardo Quinones Gonzales Internation	CIX	7.009
Francisco Carle Airport	JAU	4.009
Francisco de Orellana Airport	OCC	5.009
Gustavo Rojas Pinilla International Airport	ADZ	2.009
Hercilio Luz International Airport	FLN	9.00%
Ilo Airport	ILQ	0.009

Inca Manco Capac International Airport	JUL	6.00%
Jaen Airport	JAE	5.00%
John F. Kennedy International Airport	JFK	7.00%
Joinville-Lauro Carneiro de Loyola Airport	JOI	4.00%
Jorge Chavez International Airport	LIM	-1.00%
Jose Joaquin de Olmedo International Airport	GYE	5.00%
Jose Maria Cordova International Airport	MDE	13.00%
Lynden Pindling International Airport	NAS	1.00%
Mario Pereira Lopes Airport	QSC	8.00%
Mariscal Lamar International Airport	CUE	4.00%
Mariscal Sucre International Airport	UIO	3.00%
Mataveri International Airport (Isla de Pascua Airport)	IPC	2.00%
Mayor General FAP Armando Revoredo Iglesias Airport	CJA	6.00%
Mexico City International Airport	MEX	9.00%
Miami International Airport	MIA	6.00%
Ministro Pistarini International Airport	EZE	5.00%
Navegantes-Ministro Victor Konder International Airport	NVT	4.00%
Orlando International Airport	MCO	6.00%
Presidente Carlos Ibanez del Campo International Airport	PUQ	4.00%
Punta Cana International Airport	PUJ	3.00%
Rodriguez Ballon International Airport	AQP	10.00%
Salgado Filho International Airport	POA	5.00%
San Cristobal Airport	SCY	12.00%
Santos Dumont Airport	SDU	7.00%
São Paulo-Guarulhos International Airport	GRU	8.00%
Seymour Airport	GPS	12.00%
Silvio Pettirossi International Airport	ASU	3.00%
Viru Viru International Airport	VVI	10.00%

2050: Thunderstorms

Relative changes in rx1day (%)

Aeropuerto	ICAO code	
Adolfo Suarez Madrid-Barajas Airport	MAD	8.00%
Aeroporto de São Paulo/Congonhas	CGH	16.00%
Aeroporto Internacional do Rio de Janeiro - Galeão	GIG	7.00%
Alejandro Velasco Astete International Airport	CUZ	18.00%
Brasilia International Airport (Presidente J. Kubitschek In	BSB	8.00%
Cad. FAP Guillermo del Castillo Paredes Airport	TPP	7.00%
Cap. FAP Pedro Canga Rodriguez Airport	TBP	22.00%
Capitan FAP VIctor Montes Arias International Airport	TYL	23.00%
Carrasco Gral. Cesareo L. Berisso International Airport	MVD	7.00%
Carriel Sur International Airport	CCP	-3.00%
Cerro Moreno International Airport	ANF	
Ciudad de Catamayo Airport	LOH	13.00%
Comodoro Arturo Merino Benitez International Airport	SCL	-8.00%
Coronel FAP Carlos Ciriani Santa Rosa International Airport	TCQ	-2.00%
Coronel FAP Francisco Secada Vignetta International Airp	IQT	9.00%
Diego Aracena International Airport	IQQ	0.00%
El Dorado International Airport	BOG	16.00%
El Loa Airport	CJC	5.00%
El Tepual Airport	PMC	-1.00%
Eloy Alfaro International Airport	MEC	14.00%
FAP Captain Carlos Martinez de Pinillos International Airp	TRU	14.00%
FAP Captain Guillermo Concha Iberico International Airport	PIU	18.00%
FAP Captain Jose Abelardo Quinones Gonzales Internation	CIX	17.00%
Francisco Carle Airport	JAU	35.00%
Francisco de Orellana Airport	OCC	15.00%
Gustavo Rojas Pinilla International Airport	ADZ	-1.00%
Hercilio Luz International Airport	FLN	12.00%
Ilo Airport	ILQ	6.00%

Inca Manco Capac International Airport	JUL	8.00%
Jaen Airport	JAE	12.00%
John F. Kennedy International Airport	JFK	14.00%
Joinville-Lauro Carneiro de Loyola Airport	JOI	13.00%
Jorge Chavez International Airport	LIM	19.00%
Jose Joaquin de Olmedo International Airport	GYE	15.00%
Jose Maria Cordova International Airport	MDE	23.00%
Lynden Pindling International Airport	NAS	1.00%
Mario Pereira Lopes Airport	QSC	11.00%
Mariscal Lamar International Airport	CUE	8.00%
Mariscal Sucre International Airport	UIO	15.00%
Mataveri International Airport (Isla de Pascua Airport)	IPC	-1.00%
Mayor General FAP Armando Revoredo Iglesias Airport	CJA	16.00%
Mexico City International Airport	MEX	14.00%
Miami International Airport	MIA	8.00%
Ministro Pistarini International Airport	EZE	7.00%
Navegantes-Ministro Victor Konder International Airport	NVT	13.00%
Orlando International Airport	MCO	11.00%
Presidente Carlos Ibanez del Campo International Airport	PUQ	4.00%
Punta Cana International Airport	PUJ	-2.00%
Rodriguez Ballon International Airport	AQP	11.00%
Salgado Filho International Airport	POA	11.00%
San Cristobal Airport	SCY	31.00%
Santos Dumont Airport	SDU	8.00%
São Paulo-Guarulhos International Airport	GRU	15.00%
Seymour Airport	GPS	23.00%
Silvio Pettirossi International Airport	ASU	8.00%
Viru Viru International Airport	VVI	12.00%

2030: Strong winds

Annual maximum wind speed

Aeropuerto	ICAO code	
Adolfo Suarez Madrid-Barajas Airport	MAD	7.97
Aeroporto de São Paulo/Congonhas	CGH	5.69
Aeroporto Internacional do Rio de Janeiro - Galeão	GIG	7.90
Alejandro Velasco Astete International Airport	CUZ	3.50
Brasilia International Airport (Presidente J. Kubitschek Int'I	BSB	4.15
Cad. FAP Guillermo del Castillo Paredes Airport	TPP	2.75
Cap. FAP Pedro Canga Rodriguez Airport	TBP	4.23
Capitan FAP VIctor Montes Arias International Airport	TYL	5.55
Carrasco Gral. Cesareo L. Berisso International Airport	MVD	11.68
Carriel Sur International Airport	CCP	8.75
Cerro Moreno International Airport	ANF	7.06
Ciudad de Catamayo Airport	LOH	2.88
Comodoro Arturo Merino Benitez International Airport	SCL	8.17
Coronel FAP Carlos Ciriani Santa Rosa International Airport	TCQ	6.41
Coronel FAP Francisco Secada Vignetta International Airport	IQT	1.48
Diego Aracena International Airport	IQQ	7.01
El Dorado International Airport	BOG	1.63
El Loa Airport	CJC	7.09
El Tepual Airport	PMC	8.49
Eloy Alfaro International Airport	MEC	6.01
FAP Captain Carlos Martinez de Pinillos International Airport	TRU	3.80
FAP Captain Guillermo Concha Iberico International Airport	PIU	4.55
FAP Captain Jose Abelardo Quinones Gonzales International	CIX	4.15
Francisco Carle Airport	JAU	4.79
Francisco de Orellana Airport	OCC	2.67
Gustavo Rojas Pinilla International Airport	ADZ	9.25
Hercilio Luz International Airport	FLN	6.74
Ilo Airport	ILQ	6.22

Inca Manco Capac International Airport	JUL	3.59
Jaen Airport	JAE	3.52
John F. Kennedy International Airport	JEK	13.60
Joinville-Lauro Carneiro de Loyola Airport	IOL	4.58
Jorge Chavez International Airport	LIM	5.32
Jose Joaquin de Olmedo International Airport	GYE	3.86
Jose Maria Cordova International Airport	MDE	1.15
Lynden Pindling International Airport	NAS	13.00
Mario Pereira Lopes Airport	QSC	4.79
Mariscal Lamar International Airport	CUE	3.52
Mariscal Sucre International Airport	UIO	2.14
Mataveri International Airport (Isla de Pascua Airport)	IPC	12.86
Mayor General FAP Armando Revoredo Iglesias Airport	CJA	3.50
Mexico City International Airport	MEX	5.69
Miami International Airport	MIA	8.39
Ministro Pistarini International Airport	EZE	7.88
Navegantes-Ministro Victor Konder International Airport	NVT	5.77
Orlando International Airport	MCO	7.87
Presidente Carlos Ibanez del Campo International Airport	PUQ	11.49
Punta Cana International Airport	PUJ	11.37
Rodriguez Ballon International Airport	AQP	5.21
Salgado Filho International Airport	POA	8.10
San Cristobal Airport	SCY	7.60
Santos Dumont Airport	SDU	8.16
São Paulo-Guarulhos International Airport	GRU	5.91
Seymour Airport	GPS	7.57
Silvio Pettirossi International Airport	ASU	4.96
Viru Viru International Airport	, VVI	5.49

2050: Strong winds

Annual maximum wind speed

Aeropuerto	ICAO code	
Adolfo Suarez Madrid-Barajas Airport	MAD	7.96
Aeroporto de São Paulo/Congonhas	CGH	5.74
Aeroporto Internacional do Rio de Janeiro - Galeão	GIG	7.98
Alejandro Velasco Astete International Airport	CUZ	3.49
Brasilia International Airport (Presidente J. Kubitschek Int'I	BSB	4.23
Cad. FAP Guillermo del Castillo Paredes Airport	TPP	2.76
Cap. FAP Pedro Canga Rodriguez Airport	TBP	4.18
Capitan FAP VIctor Montes Arias International Airport	TYL	5.49
Carrasco Gral. Cesareo L. Berisso International Airport	MVD	11.59
Carriel Sur International Airport	CCP	8.70
Cerro Moreno International Airport	ANF	6.99
Ciudad de Catamayo Airport	LOH	2.87
Comodoro Arturo Merino Benitez International Airport	SCL	8.05
Coronel FAP Carlos Ciriani Santa Rosa International Airport	TCQ	6.39
Coronel FAP Francisco Secada Vignetta International Airport	IQT	1.47
Diego Aracena International Airport	IQQ	7.00
El Dorado International Airport	BOG	1.67
El Loa Airport	CJC	7.08
El Tepual Airport	PMC	8.41
Eloy Alfaro International Airport	MEC	5.95
FAP Captain Carlos Martinez de Pinillos International Airport	TRU	3.78
FAP Captain Guillermo Concha Iberico International Airport	PIU	4.53
FAP Captain Jose Abelardo Quinones Gonzales International	CIX	4.13
Francisco Carle Airport	JAU	4.81
Francisco de Orellana Airport	000	2.64
Gustavo Rojas Pinilla International Airport	ADZ	9.07
Hercilio Luz International Airport	FLN	6.71
llo Airport	ILQ	6.25

Inca Manco Capac International Airport	JUL	3.53
Jaen Airport	JAE	3.52
John F. Kennedy International Airport	JFK	13.74
Joinville-Lauro Carneiro de Loyola Airport	JOI	4.62
Jorge Chavez International Airport	LIM	5.32
Jose Joaquin de Olmedo International Airport	GYE	3.85
Jose Maria Cordova International Airport	MDE	1.15
Lynden Pindling International Airport	NAS	13.03
Mario Pereira Lopes Airport	QSC	4.88
Mariscal Lamar International Airport	CUE	3.49
Mariscal Sucre International Airport	UIO	2.14
Mataveri International Airport (Isla de Pascua Airport)	IPC	12.72
Mayor General FAP Armando Revoredo Iglesias Airport	CJA	3.47
Mexico City International Airport	MEX	5.69
Miami International Airport	MIA	8.42
Ministro Pistarini International Airport	EZE	7.85
Navegantes-Ministro Victor Konder International Airport	NVT	5.72
Orlando International Airport	MCO	7.91
Presidente Carlos Ibanez del Campo International Airport	PUQ	11.56
Punta Cana International Airport	PUJ	11.29
Rodriguez Ballon International Airport	AQP	5.20
Salgado Filho International Airport	POA	8.02
San Cristobal Airport	SCY	7.58
Santos Dumont Airport	SDU	8.26
São Paulo-Guarulhos International Airport	GRU	6.03
Seymour Airport	GPS	7.54
Silvio Pettirossi International Airport	ASU	4.97
Viru Viru International Airport	VVI	5.67

Tropical cyclones

Change in tropical cyclone speed

				2	2025 m/s)					2030 (% cambio)			2050 (% cambio)						
Aeropuerto	ICAO cod																		
Gustavo Rojas Pinilla International Ai	ADZ						48.	40					3.000					4.70	00
John F. Kennedy International Airport	JFK						45.60			-1.200				-2.700					
Lynden Pindling International Airport	NAS							58.	20		0.800)				0	900		
Mexico City International Airport	MEX				25.00					-1.400				-2.300					
Miami International Airport	MIA							54.40			0.200					0.4	00		
Orlando International Airport	MCO						43.60				0.800)					1.200		
Punta Cana International Airport	PUJ							54.60			0.700					0	900		
		0	10	20	30	40	50	60	70	-1.00%	6 0.00% 1.00%	2.00% 3	.00%	-4.00% -2	2.00%	0.00%	2.00% 4.	00% 6.0	00%